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Based on tile equation obtained earlier for the joint probability density function of the fluctuations of 
an isotropic turbulent scalar field of a reagent and its gradient [Inzh.-Fiz. Zh., 71, No. 5, 827-849 
(1998)] the authors derived and numerically solved an equation for the specific isoscalar-smface area 
~t(I') in a turbulent reactive flow. The equation for ~,t(F) contains the single-point probabili~ density 
function for pulsations of a reactive scalar and the time function that depend on the distribution of 
the energy of turbulent velocity pulsations and the intensity of scalar reagent pulsations by different 
length scales. The corresponding equations are written for all these functions. 

Introduction. The most significant approach to the modeling of combustion that allows for a deviation 
from the position of chemical equilibrium is based on the assumption which considers a turbulent flame as an 
ensemble of thin one-dimensional reaction zones (flamelets). Each zone is found in a locally laminar mixing 
environment. This description of the turbulent flame was named the laminar diffusion flamelet model. This 
concept was proposed for the first time in [2] and was extended in a number of papers (see, for example, [3]). 

The instantaneous flame consists of localized reactive leafs that are transferred by a flow and are bent 
and stretched by turbulent vortices but remain identified structures. 

The field of application of flamelet models has been the subject of discussion thus far. It is agreed that 
this concept is applicable in the region of large Damki~hler numbers; in this case, the characteristic turbulence 
scales are much larger than the typical flame thickness. These conditions are satisfied in many practical situ- 
ations, and the flamelet regime exists in spark-ignition engines, in continuous flows of aircraft engines, in 
rocket engines, and in industrial burners. 

The most important class of flamelet models is associated with a balance equation for the density of 
the flame surface. This equation describes the transfer of the average reactive surface by a turbulent flow and 
also the mechanisms of production and destruction of the flame area. The notion of the flame area was already 
used in the previous combustion models. However, an equation for this quantity was proposed for the first time 
in [4], where the combustion of unmixed reactants at the early stage is controlled by the competition between 
the deformation of the elements of the flame and mutual annihilation of the flame area because of the destruc- 
tion of its adjacent elements. The advantage of the flame model that is based on the equation for the surface 
area consists of using it to relate the analysis of an individual flamelet to that of the global turbulent field. 

Having the calculated area of the flame surface ~-, we can easily calculate the average rate of heat 
release per unit volume or the flow rate of the reagent by the formulas 

w = o z f ,  w f = - ~ Y ~ f .  (1) 

Here Q is the rate of heat release per unit area of the flame; Ahf is the enthalpy. 
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In writing an equation for Y~f based on intuitive arguments as was done in [4], we have to artificially 
introduce into the equation all the effects associated with the interaction of the rate of deformation and the 
combustion surface. At the same time, there is a possibility of deriving the equation for the flame surface on 
the basis of rigorous relations for the joint probability density function of a scalar and its gradient. Precisely 
this is the objective of the present investigation. In [5-7], the following formula that relates the specific isosca- 
lar surface to the probability density function of a scalar and its gradient was proposed: 

~,., (r) = J" W~,, (W, F) dW. 
o 

(2) 

The equation for Px,t(1-') is proposed in the work of Sosinovich et al. [1]. A solution for it remains to be found. 
However, it can be used as the reference point when an equation for the density function of the flame surface 
Ex.t(F) is derived. 

A Closed Equation for the Joint Probability Density Function (JPDF) of  the Fluctuations o f  a 
Reactive Scalar and Its Gradient.  The equation for the JPDF P,(~,  F) was obtained in [1 ] for the case of an 
isotropic turbulent field (formula (117)). The function Pt(W, F) that describes the JPDF of the absolute value 
of the fluctuations of the scalar gradient and the fluctuations of  the scalar F is related to Pt(~, F) as follows: 

P, (W, F) = 4rtW2p, (~, F). (3) 

We substitute the expression for P,(~, F) from (3) into Eq. (I 17) from [I] and, having carried out simple ma- 
nipulations, obtain the equation for Pt(W, F): 

OP t (W, F) ~ 02pt (W, F) 
- DW- 

o, oI': 
+ 

with the initial 

+ + w 5--if/- ~ 3+w (w, I3-  

- + P, (W, F) - DN, (F) W 0W 

ar  [ r)j 
_ [ ~ - -  O &b(r) r) 

k 
(4) 

P, (W, F) I t--4) = P0 (W, F) (5) 

and boundary conditions 

Pt (W, r )  I w=~ = 0 ,  P, (w, F) I w=o = 0 ,  OPt oF(W' F) r ~  = 0 ,  

Pt (W, F) llrl=rm~x = 0 .  (6) 
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Here Po(W, I") is the initial form of  the JPDF; ]-'max is the max imum value of  the scalar fluctuation that is 
determined by the initial condition. 

The first term on the right-hand side of  the equation for JPDE (4) describes the effect of  the process 
of  diffusion in the space of  scalar values, while the second term describes the effect of  the structure of  turbu- 
lent velocity and scalar fields. Here Suc(t) denotes the asymmetry  of  the joint probabili ty density function of  
the velocity and scalar fields. This function can be expressed in terms of  other moments  by the following for- 
mula: 

1 rpt 

-~ DLc c (0, t) (7) 
S u c  (t) = 

(Z (t)/3D) (e (t)/15V) 1/2 " 

Here D'L'cc(O, t) is the third derivative o f  a double-point structural third-order function o f  the velocity field and 
the scalar field with respect to the distance at r = 0; c(t) is the average dissipation rate of  turbulent energy; X(t) 
is the average dissipation rate of  the intensity of  scalar fluctuations. 

The third term on the right-hand side of  (4) describes the effect of  dissipation in the scalar-gradient 
space on the joint statistics of  the scalar reactive field and its gradient. The function Nt(I-') has the form 

A 

N, (F) = - ~ ~ c c  (u, ,, 5 - 37 ~ (t) 1 - exp [ -  c~ (7) 1-'2], (8) 

where 

T (t) = "~- Z (t) (9) 

) ~ c c  (0, t) 

Here c2(t) is the root-mean-square intensity o f  the scalar fluctuations; D ~ ) ( 0 ,  t) is the fourth derivative of  a 
double-point structural function of  the scalar turbulent field with respect to the space variable r at the zero 
value of  this variable. 

The fourth term on the right-hand side of  the equation for the JPDF describes the effect of  cross dif- 
fusion in the space of values of  the scalar and velocity gradient on the joint statistics of  the reactive scalar and 
its gradient. The function Xt(1-') is determined by the expression 

Here we use the following notation: 

(73 27T:  ^ r - F =  (11) 
8 [ 5 - 9 T 2 ]  ' ~ / ( ~ )  ' 

^ ^I  
K t (F) = ~ (t) • (1-')/ 6D (12) 

2n-I 2 

~c ( = N (n) (2n + 1) ( F / N  (n)) 2n÷1 2n - (2n + l) ( F / N  (n)) 2''+1 , (13) 

"~-  F (2n + 2) 
N (n) - F (2n + 3 /2)  (14) 
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The quantity n can take on values larger than or equal to zero. 
The fifth term on the right-hand side of (4) describes the effect of the chemical-reaction rate on the 

JPDF. 
In principle, we can try to solve Eq. (4) numerically. In this case, we need to complete it with a sys- 

tem of moment equations, from which we could obtain information about the functions e(t), X(t), Suc(t), and 

D~)(0 ,  t). 
A Closed Equation for the Specific Isoscalar-Surface Area in a Turbulent Reactive Flow. As is 

seen from formula (2) the specific area of the isoscalar surface Z~(W, F) is the first moment of the JPDF 
P ~  (W, 1-). For this function, Eq. (4) is written. Using (4), we derive an equation for the function Z~(W, F). 

We multiply the left-hand and right-hand sides of Eq. (4) by W and integrate it from 0 to ~: 

3 O" (W,I")dW+ fl~" I WPt (W, I-) d W = -  D W ---~ Pt 
Ot o o 

![ " W  2 2 a + ~ - P t ( W , F ) d W -  - DN t ( r )  W 2 W aW 

- 2 D  X, (F) ! W 1 r) 

-Iw,, w (15) 

We write Eq. (15) in symbolic form: 

a 
0-7 (0) = (I) + (II) + (II1) + (IV) + (V).  (16) 

Let us transform each term of (16). Using determination (2) for the specific isoscalar-surface area, on the left- 
hand side we obtain 

(0) = I WPr (W, F) dW = Z t (F).  
0 

(17) 

The subscripts x--~,t in the notation Zt(F) are replaced by the subscript t, since we restrict ourselves to the deri- 
vation of an equation for Zt(F) in the approximation of isotropic turbulence. 

We transform term (I): 

- 02 
(I) = - D f W 3 ~ p, (W, F) dW = 

o 

a2 i 02 
- D --OF 2 W 3 Pt (W, F) dW= - D ~ -rY(3) (F). 

o 

(18)  

Here the notation 
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Z(t 3) (F) = [ W 3 Pt (W, F) dW 

0 

is used for the average conventional value of the cube of the gradient of the reactive scalar field. 
For (II) we obtain 

Suc (t) 
(II) = 2 

(19) 

2 X15 )L , (r) . (20) 

We carry out the transformation of (III): 

( I I I ) =  - D N  t (I-) 2 _ 2 ~ + W Pr (W, F) dW = 
oL w aw 

= - 2DNt (C)  ~(t -1) ( r ) .  

In expression (21), we used the notation 

(21) 

X{r -') (C) = [ W- '  P, (W, F) dW. (22) 

0 

From (22) it is seen that £t-t)(F) denotes the conventional average value of the reciprocal of the gradient. For 
it, as for ZI3)(F), we will obtain an approximate expression in terms of traditional statistics of the scalar and its 
gradient. 

For (IV), we have 

( I V ) = - 2 D ~  X t(F)  W I + W  P r ( W , F )  d W  = 

0--0-- X (F){Z, ( F ) -  2Z t (F)/= 2D ~F[X,  (F)Z t (F) 1 . (23) = - 2 D  O F  t 

For (V), we obtain 

0 O(b (I-) + 0 
(v)  = - (b (r)  ~ -  2 ~ 2 ~, (r)  = - (b (r)  ~ y~, ( r ) .  (24) 

We substitute the results of the calculation of expressions (O)-(V) into equality (16): 

,)  

- 5 - - - ( 1 5 v  )L ( r ) -  x (,) ' 

- 2 D N ,  (r )  Z(, -b ( r )  + 2D X r (1-") Z t ( r ) ]  - 6 (C) ~-~ E t (F) .  (25) 
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To close Eq. (25) for the specific isoscalar surface it is necessary to propose a method for expressing the func- 
tions ZI3)(F) and Y,I-1)(F) in terms of the known statistical quantities. It is also necessary to prescribe a particu- 
lar form of the function c0(F) that describes the reaction rate as a function of the concentration field. 

Expressions for the functions ZI3)(F) and ZI-1)(F) can be represented in the form 

Z(-l) , (F)=IW-JPt(W]F)dWft(F), 
o 

(26) 

Zl 3) ( r ) =  I w3et (WI F) dWft (F). 
o 

(27) 

Here Pt(W IF) is the conventional probability density function of the scalar gradient calculated with a pre- 
scribed scalar field c(x-~,t) = F; ft(F) is the single-point probability density function for the scalar field. We 
rewrite formulas (26) and (27) in the form 

z(-~) (r) -- ~-~)(r) f ,  (r) t 
(28) 

Z<3) (F) = W~t 3) (F)ft (F) (29) 
t 

where 

~ - ' )  ( F ) :  I W -l e,(wlr)~rw, 
0 

(30) 

oo  

~3, (r)= J" w 3 e, (wl r) ~ .  

o 

(31) 

The conventional function Pt(WIF) in equalities (30) and (31) is determined as 

P, (wl r) - ,o, (w, r_____2 (32) 
f, (r) 

To evaluate the integrals on the right-hand side of equalities (30) and (31) we can resort to the distribution law 
of the modulus of a three-dimensional vector (see [8], p. 435): 

f 
(wl r) = 4 0, PI 

[  i;/1 : ~ w  expt  } 
- o o < W < 0 ,  

0 < W < + o o .  

Calculating by formulas (30) and (31) with account for (28) and (29) yields 

(33) 

(34) 
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.. \ 3 / 2  
5"(3) 16 (.Z (t)] (35) _, I , ( r )  

With this approximation of the function Z~3)(F) the first term on the right-hand side of the equation for Zt(F) 
will involve the second derivative of the function fi(F), which presents significant difficulties in numerical so- 
lution of this equation. Since the form of the first term resulted from an approximation of the function Z}3)(F), 
we can propose, for the first term in (25), another expression for Z}3)(F) that will present no numerical diffi- 
culties in solving the equation for Zt(F). 

We write formula (19) for Z~3)(F) in the form 

5", (3) (F) 14/tt 3) (F) (36) 
]~(t 3) ( F )  = - t  Y~t ( I " )  - - -  X t ( F ) .  

x, (r) ~ )  (r) 

Here W~3)(F) is determined by formula (31), while W~I)(F) is determined by the following expression: 

c~ 

W~/l) ( r)  =IWPt ( w i t )  ~ v .  
[) 

(37) 

Using (33) for Pt(W I F) we find 

e p{ W~t l) (F) = ~ [)~ (t)/3D]3/2 
r h i / 2  w~ }~=--4 Ix(')/ 

2 Z (--t)/gD ~L 3 D  / " 

(38) 

By employing (31) and (33) we obtain 

~- -~1/2 
16 /z (')/ 

N3' (r) = ---~ L-~D-- j . 

(39) 

With account for (38) and (39) 

Y(3) (F) = 4 ( - ~ ) X t  (F) t 

Substituting (34) for 'E~-I)(F) and (40) for ]~3)(F), we obtain the final form of the equation for Zt(F) 

(40) 

8Y-'t (F) 

~t 

8 X (t) - ] 4 

=-3Z(t)-~E'(F)-Suc(t)--~15v)L 2 3 -2~--n f t ( F ) j -  

~¢2x ~Z (t)) " (41) 

Derivation of the Equation for fi(F). An equation for the single-point probability density function of 
a reactive scalar can be obtained from the equation for the JPDF Pt(W, F) using the formula 
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ft (F) = I Pt (W, F) dW,  
0 

(42) 

whence it is seen that ft(F) is the zero-order moment of the JPDF Pt(W, F). Integrating the left-hand sides of 
(4) with respect to W from 0 to ~ and taking (42) into account, we obtain the equation for ft(F) in the follow- 
ing form: 

~t 32 a 
f (F) = - 3--~ [Xt (F)ft (F)] - --3F [& (F)ft (F)]. (43) 

It contains the unknown function Xt(F), i.e., the conventional rate of scalar dissipation (CRSD). For this func- 
tion, we can derive an equation from (4) if we resort to the formula 

X~ (F) = 

o [ ~ t', (w, r') ,#v 
0 

/, (r) 

(44) 

It is seen from (44) that the conventional dissipation rate is the second-order moment of the JPDF Pt(W, F). A 
closed equation for Zt(F) in the case of a nonreactive scalar field was derived in [9]. 

Supplementing the equation derived in [9] for ),(I-) with a source chemical term, we obtain (see Eq. 
(19) in [9]) 

a t  - - O r e  - S v c  (t) Z, (r) .f, (r) - Z (t) 

3 3 
- 6D 2 N, (F ) f  t (F) + 4D ~ [X t (F) Zt (F)f, (F)] - cb (F) ~ [)~t (F)ft (F)] + 

+ afo (r) 
Or [z, ( r)f ,  (F)]. (45) 

The equation for )0(F) involves the unknown function )~(F), i.e., the mean square of the conventional rate of 
scalar dissipation. We take the following function as a hypothesis for modeling the unknown function ;~(F): 

z; (r) = t2 z, (F) Z, (F).  (46) 

In writing formula (46) for ~;~(F), we assume that the effect of the pulsations of the conventional rate of scalar 
dissipation on the evolution of this function is insignificant. The coefficient k2 will be determined below. 

The equations for Zt(1-') and )O(1-') contain a number of functions that must be calculated from supple- 
mentary equations. These are the functions Svc(t), i.e., the asymmetry of the joint probability density function 
of the fields of the velocity gradient and the scalar, D~)(0,  t), i.e., the fourth derivative of the structural dou- 
ble-point function of the difference of concentrations at two points of an isotropic turbulent flow with respect 
to the distance when this distance is zero; e(t), i.e., the average dissipation rate of the energy of the turbulent 
velocity field; Z(t), i.e., the average dissipation rate of scalar-fluctuation intensity, and c2(t), i.e., the square of 
the variance of the scalar field. 

The evolution of the above functions can be found from solution of a coupled system of equations for 
the functions that describe the distribution of the energy and intensity of scalar reagent pulsations by different 
length scales. The system of equations for these functions is given in [1] (see formulas (122)-(126)) and [10]. 
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Numerical Solution of the System of Equations for the Specific Isoscalar-Surface Area. We deter- 
mine dimensionless variables by the formula 

A = -A Ac,  (47) 

where Ac is the characteristic variable A. We select the characteristic quantities: Cc = ICmaxl is the concentra- 
tion; it is taken to be equal to the maximum value of the concentration; Lc = Lc(0) is the length scale equal 
to the initial scale of the scalar field length; Ec = IlL c is the specific isoscalar-surface area; fc = 1/Cc is the 
single-point probability density function; qc = ~q2(0) is the square of the velocity pulsation; it is selected to 
be equal to the initial square of the velocity pulsation; tc = Lc/qc is time; it is selected to be equal to the time 
of one rotation of  an energy-containing vortex; 7.c = C~/tc is the scalar dissipation; ac = q~/tc is the dissipa- 
tion rate of the turbulent velocity field; P~) = C~/Lc is the magnitude of the function P](r); (D~'cc)c = 
qcC~/L~ is the magnitude of the function D2"cc(O, t); Pe = qcLc/D is the P~clet number; Re = qcLc/v is the 
Reynolds number; Sc = v/D is the Schmidt number; Da = tc/tr is the Damkghler number; tr is the chemical- 
reaction time. 

We write the system of equations for Et(F), ft(F), and )ct(F) in dimensionless form. In what follows, we 
omit the overbar in the corresponding dimensionless functions and variables. 

The equation for Y~t(F) in dimensionless tbrm appears as 

~E t (F) 4 32 
a t  - - 3 z ( t )  z ,  ( r )  - 

+ 

.x[(Re e (t) l s n 8P' e aF,(r)l 
- ~ / (  15 ) UC it' } 3 6N~-~ ~ (t)l/2 ~? J+ 

OF t ( r )  
~n(w) (0, t) 8 ^ F , . - c c  ~, (r) ~ + 
6~x  Pe 3/2 

E ^ f ~((t) 0 ~: ( r )  exp ! -  A 2 

O 
- Da ¢b (F) ~ Z, (F). (48) 

Here we used the notation 

]V,(F)= 5 - 3 T ~ ( t ) 1 -  exp {- (x (T) ~ 2} . (49) 

In the equation for Zt(F), instead of fr(F), we introduced the function Ft(F), which is related to the former by 

r 

F, (r) -- IJ, & 
0 

(50) 

Its behavior is smoother than the behavior of the differential function ft(F). The equation for the function 
Ft(F) has the form 

0ft0t(F) = _ ~ Z, (F) ~-~ F, (F) - Da ~b (F) ~ 0 F  (51) 
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We need only to write the equation for xt(F) in dimensionless form: 

OF t (F) 
0Zt (r) 32Xt (r) ( ~ ) 2  O [%t (F)]2 O in O----r-- 

Ot = - Zt  (F) OF a 2 - 3-F OF 

--q(~5 13.('))Suc(')[|-- ~t(r)l 
x it) J x, (r) + 

D (IV) + c--4-~ ~, (~)~ 
Pe" 

2X(t)[OlnOF'(r-------2) lO 
OF + X~(I-)z, 

3 4 ( c _ ~ t ) )  L OF 7 
(r) + 

OF 
(52) 

The solved system of dimensionless partial differential equations consists of Eq. (48) for the density of 
the flame surface, Eq. (51) for the single-point probability density function, and Eq. (52) for the conventional 
rate of scalar dissipation. To allow for a particular type of chemical reaction in (48), (51), and (52), we must 
determine the function (b(F) and the parameter, i.e., the DamkiJhler number Da. For simplicity we assume that 
an expression for (b(F) is prescribed as the first-order reaction rate (J)(F) = F. This formula can describe a 
binary chemical reaction in the situation where one reactant is in very short supply [6]. In this case, the system 
solved can be written as 

= -  2 D  (t) (t) J A (t) 
3t  OF 

84-ffe ,j~ ] 
- ~ X (t) -f,I 

J 
+ 

+ 
OF t ( r )  

2C (t) P~e _ a v  
N, (F) ~ + 

X (t) - 

D (t) O [K ^ 
2 ~ (F) 

exp{_ ct (T) ~2 / ] 3Z, /Zt(F) - D a F - - ,  
3F 

(53) 

aF, (r) a [ OF, (r)] aF, (r) 
at - ar  LX' (r) T / -  Da r a--F 

] &, (r) (r) - klA (t) 1 - k~ Zt (F) - C (t)/V, (F) - Xt (F) I "~0-----q-- 
~t 

ax, (r) a F aF, (r)] 
- 2f,-' (r)  a---F ar/Ix' (r)TJ + 

2 ~ ' ( r o /  1 a {rexp[-a(73ff ]z , ( r ) f t ( r )}-Da x , ( r ) - r ~ ) ,  + D (t) ft (r) a r  

(54) 

(55) 
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where 

4 (~'-5 / /3(IV) (0, t) 2 X(t) (56) Re "-'cc • D (t) - 
A ( t ) =  ~( t )  S v c ( t ) ;  C ( t ) = -  Pe 2 , 3 ](~-~ 

The coefficient kl results from the fact that a simplifying assumption of the equality of several similar mo- 

ments to one is made in deriving Eq. (4) in [1]. In physical meaning, kl must be of the order of unity. Having 

appropriately selected the coefficients kl and k2, we can approximately satisfy the normalization conditions 

j" x,(r)f,(r)ar = x(,) and I r2f'(r)ar = cz(t) 
Taking into account the symmetry of the functions Zt(F) and )~t(F) and the antisymmetry of the func- 

tion Ft(I-') relative to the origin of coordinates, we will consider half of their domain of definition, 0 < F < 1. 
The boundary conditions have the form 

I l OZ,(F) =Z,(l)= Oz,(F) =(Xt)Ir=I=FtIF~=0, f t l r= l=g .  (57) 
OF r ~  3F r~) 

The numerical solution of the boundary-value problem (53)-(57) is strongly complicated by the presence of 

terms with "negative" viscosity -D(t-~5-c2 --O2Et(F) -O / OF[x~Ft / OF] ,  and -Xt[0-Xt/0F~ 2] that characterize antidif- 
0F 2 , 

fusion in the phase space of the values of the scalar F. 
The presence of the "antidiffusion" terms makes problem (53)-(57) similar to classical inverse prob- 

lems. An extensive literature is available on the theory of solution of inverse problems [11-43] using different 
variants of the regularization method. However, there are few appropriate examples of numerical solution of 
the so-called retrospective problems on rather large time intervals without a critical dependence on the regulari- 
zation parameter that fails to be selected so small as to prevent a substantial dependence of the solution itself 
on it. 

To avoid numerical instability, we solved problem (53)-(57) in the opposite direction with respect to 
time, beginning with the "starting" time ts and advancing to smaller values of t. We employed the method of 
solving the system of partial equations (the method of straight lines in the form of the MOLCH standard nu- 
merical procedure from the IMSL package [15]). 

There is good reason to indicate the "starting" functions Zt(F), ~t(F), and Fr(F) at the end of a mixing 
process. The selection of the analytical form for "starting" values of the functions ~t(F) and Ft(1-') was based 
on the fact that at the end of the mixing process the single-point distribution function ft(F) has a Gaussian 
form. As is known, the single-point probability density function (PDF) tending to a Gaussian form is due to 
the fact that the CRSD becomes independent of the scalar [16]. Using this fact, we can select, as the "starting" 
functions for calculating, the Gaussian form for the single-point PDF and the form of the CRSD independent 
of the scalar field. 

The "starting" distributions of the functions Ft(F)  and fi(F) in this state were prescribed according to 
model analytical expressions (see formulas (42) in [9]). The "starting" value for the function Zt(F) is prescribed 
by the formula Zt~(F) = fts(F)zt~(F) that expresses the statistical independence of the scalar-field gradient and 
the scalar at the final step of mixing [6]: 

[3 2Zt~ arctan ((1 - F)/y) . (58) 
Z ,  (F) = f ,  Z, s - o(' + r a ~: 

Usually, the process of integration of equations in the opposite direction began from the instant ts = 25-30, 
which corresponds almost totally to the mixed state. This corresponds to a sharp maximum of the function f~ at 
F = 0 and to nearly zero values of f~ when F > 0. 
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Fig. 1. Individual terms of the right-hand side of Eq. (53) for the condi- 
tions of the specific isoscalar-surface area at Da = 0 [a) at the instant t = 
0; b) 0.5; c) 1; d) 2.5; e) 5; f) 10]: 1) "source"; 2) "dissipation"; 3) "an- 
tidiffusion"; 4) "transfer" in the space F; 5) sum of all the terms on the 
right-hand side. 

In test calculations, we checked the sensitivity of the numerical solution to the setting of starting con- 
ditions. Thus, the same conditions were set at different starting instants in the interval ts e (15, 30) or two 
more sets of model analytical dependences for the "starting" distributions were used. These calculations showed 
that the features of setting the starting conditions are smoothed on the time interval At N 1.5, and further in 
calculating we obtain a behavior of the functions of system (53)-(57) that is close to a universal behavior in- 
dependent of the starting conditions. 

Results of the Numerical Solution of the 
equation obtained above for Zt(I-) is new and has 
to study its individual terms that are responsible 
magnitude of individual effects on the right-hand 
Damk6hler numbers. Here the "source" is used to 

System of Equations for Et(1-), FRO-), and Zt(1-'). Since the 
not been described earlier in the literature, it is appropriate 
for different effects. Figures 1 and 2 give a change in the 
side of Eq. (53) and Et(1-') at different evolution times and 
refer to the term that is proportional to S u c ( t )  and describes 

the influence of the turbulent velocity field on the distribution of the isoscalar surface. This is the only term in 
Eq. (53) for Et(F) in which the characteristics of the turbulent velocity field appear directly. The influence of 
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Fig. 2. Individual terms of the right-hand side of Eq. (53) for the conven- 
tional specific area of the isoscalar surface at Da = 0.25: a-f) 1-5) notation 
is the same as in Fig. 1; 6) "chemical reacting." 

the velocity field on the density of  the isoscalar surface is realized in terms of the "source." As the figures 
show, the source term is positive at almost all F, its small magnitude being attained with small fluctuations. 
This behavior of the "source" is due to the fact that the correlation of the pulsations of the scalar and the 
specific surface area is larger with small pulsations and accordingly smaller with large ones. This term can 
change its sign at the initial steps of mixing in the vicinity of  the point F = 1, which is associated with the 
&like character of the distribution of the function fr(F) at this point. Therefore, the source term characterizes 
not only the increase in the flame surface density function (FSDF) due to the mixing by the turbulent velocity 
field but also such a redistribution of  the FSDF for which this function increases in the region of moderate 
concentrations (F = 0) and decreases at limiting concentrations. 

Comparing the "source" at the same evolution times but different DamkiJhler numbers, we can note 
that the maximum of this term at small F increases with chemical action. At large evolution times and in the 
presence of the chemical action, the "source" has a minimum at small F. It is not improbable that this phe- 
nomenon is associated with the peaking of characteristic realizations of  the scalar-gradient field at small F. 

Figures 1 and 2 show the behavior  of  dissipation in Eq. (53) at different evolution times and 
DamkiJhler numbers. The dissipation term in Eq. (53) is proportional to the derivative of the structural function 
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1.4; 4) 2.5; 5) 5; 6) 15; 7) 20. 

D~V)(0, t). It describes the action of molecular dissipation on the isoscalar surface. As is seen from Fig. 1, the 
dissipation at all the evolution times is negative, which agrees with its physical meaning. At small times, ex- 
cluding the region in the vicinity of F = 1, the value of the dissipation is independent of  F. When t > 1 the 
dissipation term has a negative maximum at small F that increases with further evolution. This behavior of  the 

dissipation is associated with the structure of  the function Nt(1-'), to be more precise - with the presence of the 
exponential factor in the expression for N t ( F ) .  The form of the function NI(1-') is determined by the conven- 
tional statistics of  the second derivatives of the scalar field. Comparison of Figs. 1 and 2 shows that the noted 
features of the behavior of dissipation remain basically the same even when the chemical reaction is taken into 
account. We can only note a somewhat larger peaking of the maximum of the curve with small fluctuations. 
Starting with the instant t = 1, the source and dissipation terms are the largest effects in Eq. (53); however, 
since their signs are opposite, the remaining effects also exert a pronounced influence on the evolution of the 
function Et(l-). 

The "antidiffusion" term - 2 D ~  02Zt(1-') OF.2 is called such because it describes a shift of  the distribu- 

tion of Zt(F) to the center of the phase space F in the process of evolution. Its function is governed by the 

physics of the process of mixing. As the scalar field is mixed, the probability of small fluctuations must in- 

crease. In the phase space F, this means a shift of the distribution function to the center of  the space, i.e., 

antidiffusion. 
As Fig. 1 shows, in the equation for Zt(F) this term first is positive with a maximum at larger fluctua- 

tions. When t > 2.5, the maximum shifts toward smaller F. This behavior of "antidiffusion" is associated with 
the evolution of the distribution function in the process of turbulent mixing. First the influence of "antidiffu- 
sion" shows up with large fluctuations, and as they decrease the zone of this influence shifts to the center of 
the phase space. Comparison of Figs. 1 and 2 indicates that taking into account the chemical action introduces 

no substantial change into the character of the behavior of the "antidiffusion" tern1. 
The term that is called transfer - the fourth on the right-hand side of  Eq. (53) for El(l-') - is associated 

with taking into account the correlation between the scalar and its second derivative. Unlike the dissipation that 
is proportional to the square of the second derivative of the scalar field, the "transfer" in the space F is asso- 
ciated with the first degree of the second derivative. As is seen from Fig. 1, this term is always negative in the 
process of evolution. Its form remains practically constant in evolution. Taking into account the chemical ac- 
tion on the scalar field does not substantially change the transfer and the character of its influence on ~t(1-') 
(see Figs. 1 and 2) either. 

As is seen from Figs. 1 and 2, the sum of the actions of these effects on the right-hand side of Eq. 
(53) on the evolution of Zt(F) undergoes a rather complex evolution. First, this sum changes the sign in the 
phase space F. The right-hand side of Eq. (53) is negative at small F and positive at large F, which governs 
the change in the form of the profile of the function Zt(F) to a flatter one when t -  1. After this instant, the 
right-hand side again becomes alternating for a time (see Figs. lc and 2c at t = 1) but now, conversely, with 
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a minimum at large F, which indicates a new rearrangement of the form of the ~t(F) profile. With evolution, 
the fight-hand side of the equation for Zt(F) levels off, and at larger times the basic processes of change in the 
function Zt(F) are concentrated in the region of small F with a maximum at small F and a minimum at inter- 
mediate ones. 

This change in the fight-hand side of Eq. (53) causes a rather complex evolution of the form of the 
specific isoscalar-surface area (see Fig. 3). As the presented graphs show, the evolution of the function Zt(F) 
lies in the peaking of its form from a nearly flat form first to a parabolic one, and subsequently when t > 6 its 
form resembles a 5 function narrowing with mixing time. 

Taking into account the chemical interaction does not substantially change the character of evolution of 

the specific isoscalar-surface area. Figure 4 shows a change in the function E(t) = I~t(l")dI-" that is integral 
0 

over all values at different DamkiJhler numbers, It is seen that the general tendency is for a gradual decrease 

in the value of this function. The increase in Y.(t) at the initial step of evolution is associated with the turbulent 

splitting of the scalar field. The influence of the chemical reacting is rather complex in character. At the be- 
ginning of the evolution, the total reacting surface with allowance for the chemical reaction is larger than in 
the inert scalar field. However, subsequently the chemical action leads to a more rapid decrease in the reacting 
surface. 

As is seen from formulas (53) and (55), the structure of the equations for Zt(F) is similar. This is 
associated with the fact that the functions Et(F) and xt(F) are, respectively, the first and second statistical mo- 
ments of the joint probability density function of the scalar and its gradient. The similarity of the equations for 
)~t(F) and Zr(F) is expressed in the fact that the equation for ~t(F) contains the terms of the same meaning as 
the equation for ZI(F) does, i.e., the source term 1, the dissipation term 2, the antidiffusion term 3, and the 
term of transfer in the space F 4. The evolution of the function Xt(F) without allowance for the chemical reac- 
tion is presented in [9]. 

Conclusions. The evolution of Zt(F) resulting from the solution of the system of equations is in agree- 
ment with the results of direct numerical modeling of the turbulent velocity and scalar fields. 

The closed system of equations developed can be employed in calculating chemical reactions in turbu- 
lent flows and the processes of turbulent combustion within the framework of the flamelet approach. The re- 
sults obtained can be used in the development of practical devices for dispersion and homogenization of fuel 
emulsions with the aim of improving the efficiency of their combustion. 

This work was carried out with financial support from the Republic Fund for Fundamental Research. 
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